

0.61 INCH MICRO-DISPLAY

P/N: DSB-2270-S000

1 Overview / Applications

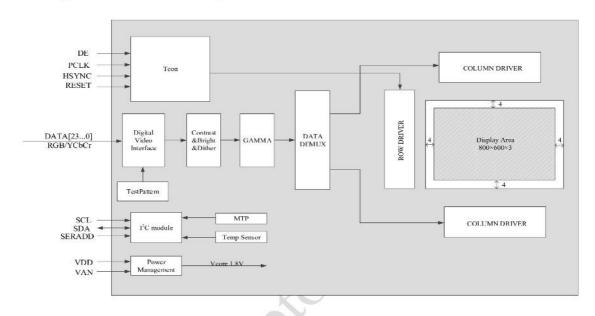
This microdisplay is a top-emitting, high-efficiency and active-matrix-driven silicon-based OLED microdisplay. Its silicon substrate is manufactured by 0.18µm CMOS technology. This product integrates some modules like signal enhancement circuits, row and column drive circuits, logic control circuits, etc. It supports 8/16/24bit digital video signal

and ITU-R BT.656 video format. Through the I²C-bus interface, it can realize the control and adjustment of display mode, display position, brightness, contrast and other functions. This product has the characteristics of low power consumption, high-resolution, highintegration, miniaturization, etc., and it can be widely used in various near-eye display systems with miniaturization, high-resolution, low power consumption and widetemperature range.

1.1 Key Features

- Low power consumption
- High contrast
- The communication interface supports I²C
- The video interface supports RGB, YCbCr, ITU-R BT.656
- Embedded temperature sensor
- Support PWM-mode brightness adjustment function
- Support image brightness and contrast digital signal enhancement function
- Support horizontal / vertical inverse display of video images and timed movement

function


1.2 General Features

Parameter	Specification		
Product category	Color		
Resolution	800×600 (808×608 reserved)		
Pixel arrangement	RGB vertical stripe		
Pixel dimension	15μm×15μm		
Display area	12.0mm×9.0mm (0.60 inches diagonally)		
Gray level	256-level		
Uniformity @150ed/m ²	≥ 90%		
Contrast	>10000:1		
Refresh rate	25Hz~75Hz		
Video interface	24bit-RGB、 8/16/24bit-YCbCr、ITU-R BT.656		
Typical brightness	150 cd/m ²		
Recommended brightness range	$50 \text{ cd/m}^2 \sim 300 \text{ cd/m}^2$		
Supply voltage	1.8V、5V		
	100mW @60Hz		
Typical power consumption	75mW @25Hz		
Weight	<1.5g		
Operating temperature	-45°C ~ +65°C		
Storage temperature	-55°C ∼ +70°C		

2 Function Overview and Interfaces

2.1 System Block Diagram

2.2 Pin Description

The electrical interface of the microdisplay adopts a 40pin in-line connector with a spacing of 0.5mm.

VDD	1 2	VAN
VDD	3 4	VAN
GND	5 6	GND
SCL	7 8	RESET
NC	9 10	SERADD
HSYNC	11 12	SDA
DATA 22	13 14	GND
DATA_20	15 16	DATA_23
DATA_18	17 18	DATA 21
DATA 16	19 20	DATA 19
DE	21 22	DATA 17
GND	23 24	PCLK
DATA 14		DATA 15
DATA 12	1000	DATA 13
DATA 10	27 28 30	DATA 11
DATA 8	31 32	DATA 9
DATA 6		DATA 7
DATA 4	33 34	DATA 5
DATA 2	35 36	DATA 3
DATA 0	37 38 40	DATA 1

Note:

Please refer to Chapter 6 for detailed dimensions of the connector.

The electrical interface pins of the microdisplay are defined as follows.

Pin No.	Symbol	Description			
1	VDD	Digital circuit power supply			
2	VAN	Analog circuit power supply			
3	VDD	Digital circuit power supply			
4	VAN	Analog circuit power supply			
5	GND	Power GND			
6	GND	Power GND			
7	SCL	I ² C clock			
8	RESET	Reset signal, active low			
9	NC	Not used, recommended to connect to GND			
10	SERADD	I ² C slave address selection			
11	HSYNC	Video horizontal synchronization			
12	SDA	I ² C data			
13	DATA22	Data signal R[6]			
14	GND	Power GND			
15	DATA20	Data signal R[4]			
16	DATA23	Data signal R[7]			
17	DATA18	Data signal R[2]			
18	DATA21	Data signal R[5]			
19	DATA16	Data signal R[0]			
20	DATA19	Data signal R[3]			
21	DE	Video data enable			
22	DATA17	Data signal R[1]			
23	GND	Power GND			
24	PCLK	Video point clock			
25	DATA14	Data signal G[6]			
26	DATA15	Data signal G[7]			
27	DATA12	Data signal G[4]			
28	DATA13	Data signal G[5]			
29	DATA10	Data signal G[2]			
30	DATA11	Data signal G[3]			
31	DATA8	Data signal G[0]			
32	DATA9	Data signal G[1]			

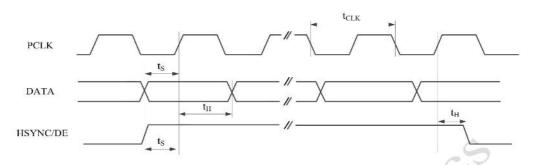
Pin No.	Symbol	Description
33	DATA6	Data signal B[6]
34	DATA7	Data signal B[7]
35	DATA4	Data signal B[4]
36	DATA5	Data signal B[5]
37	DATA2	Data signal B[2]
38	DATA3	Data signal B[3]
39	DATA0	Data signal B[0]
40	DATA1	Data signal B[1]
		Optoelective

3 Electrical Characteristics

3.1 Absolute Maximum Ratings

Symbol	Description	Min.	Max.	Unit
VDD	Digital circuit power supply	-0.3	2.2	V
VAN	Analog circuit power supply	-0.3	5.5	V
V_{I}	Input digital signal level	-0.3	VAN-0.3	V
Tst	Storage temperature	-55	+70	"C
Тор	Operating temperature	-45	+65	°C

3.2 DC Characteristics


Symbol	Description	Min.	Тур.	Max.	Unit
V_D	VDD voltage	1.75	1.80	1.85	V
I_D	VDD current	VO.	_	40	mA
V_{Λ}	VAN voltage	4.90	5.00	5.10	V
I_{Λ}	VAN current	Z-	223	25	mA
V _{IL}	Valid low level of digital signal	-0.3	1 7 - 1 1	0.5	V
$ m V_{IH}$	Valid high level of digital signal	1.2	_	3.6	V

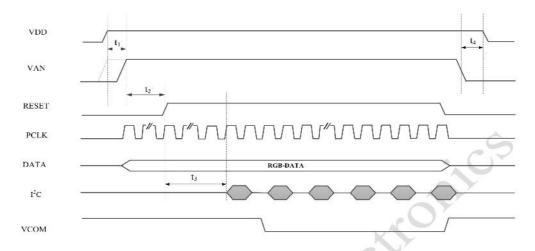
Note:

Digital input signals are compatible with level standards such as 1.8V, 2.5V, 3.3V, etc., but must meet the electrical standards in the table above.

3.3 AC Characteristics

Symbol	Description	Min.	Тур.	Max.	Unit
ts	Setup time	4	_=	(ns
t _H	Hold time	1.5	_	K	ns
t _{CLK}	Clock cycle	_	15.4	_G	ns
d _{CLK}	Duty cycle	45	50	55	%

3.4 Power Consumption

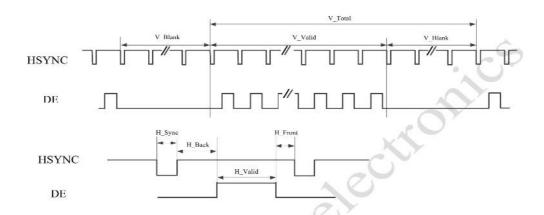

6h -1	Dinti-	Ty	TT 44	
Symbol	Description	25Hz	60Hz	Unit
P_{VDD}	VDD power consumption	25	50	mW
P_{VAN}	VAN power consumption	50	50	mW
P _{POWER}	Power Total power consumption		100	mW

Note:

All white display, brightness = 150cd/m², temperature = +25°C \pm 2°C.

3.5 Power Sequence

Symbol	Description	Min.	Тур.	Max.	Unit	
t ₁	Power on time between VDD and VAN	٥٥	_	_	ms	
t_2	Reset time	5	2227	_	ms	
t ₃	MTP reload time	5 frames time	(1)	_	87 87	
t ₄	Power-off interval time	0	<u>12</u>	_	ms	


Note:

- In order to avoid display errors when the screen is powered on, it is necessary to ensure that the video data is accurate and at least one frame time later, then configure the C6H register with 0x01, turn on the VCOM voltage and light up the screen.
- 1. Before powering off, to avoid unstable graphics during shutdown, it is recommended to first turn off the VCOM voltage and configure the C6H register with 0x00. During power-off, if the VDD voltage is not lower than VAN voltage, two power supplies can be turned off at the same time.
- 2. Before RESET is pulled up, the PCLK needs to enter a steady state.

3.6 Video Sequence

The timing of the video signal input to the microdisplay shall be in accordance with VESA Standard. When the timing of the video signal is not in accordance with VESA Standard, the parameters below can be configured according to the timing requirements as shown in figure.

Symbol	Min.	Тур.	Max.	Unit
V_Blank	18	28	400	HSYNC
V_Valid	_	600	-	HSYNC
H_Sync	6	128	500	PCLK
H_Back	6	88	500	PCLK
H_Front	12	40	500	PCLK
H_Valid	-	800	-	PCLK

4 Function Description

4.1 Register Map

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	Default
01H	0	0	Test pat	tern selec	ction	Input	video format	selection	0x03
02H			Set 256-	level red	gray of test	pattern			0x00
03H			Set 256-le	evel greer	gray of tes	t pattern			0x00
04H			Set 256-1	evel blue	gray of test	pattern	40	201	0x00
05H	Sync	hronization mode	1	0	Interla progre scan	essive	Vertical scanning	Horizontal scanning	0x60
06Н	0	0	Direction of movement	N	umber of co	lumns to m	ove to the lef	t / right	0x00
07H	0	0	Direction of movement		Number of rows to move up / down			0x00	
08Н	0	Left / right movement enable	Up / down movement enable	ment Timed movement distance (number of rows / columns)					0x00
09H		Time interval f	or movement T	IME [7:0], the unit is	the length	of one frame	time	0x00
0AH		Time interval for	or movement TI	ME [15:8], the unit is	s the length	of one frame	e time	0x00
овн	1	Time interval fo	r movement TI	ME [23:1	6], the unit i	is the length	of one fram	e time	0x00
0СН	Time interval for movement TIME [31:24], the unit is the length of one frame time					0x00			
0EH	Horizontal total pixels H_Total [7:0]					0x20			
0FH	0					al [11:8]	0x04		
11H			Horizont	al valid p	ixels H_Val	id [7:0]			0x20
12H	0	0	0	0	Horizo	ontal valid	pixels H_Val	id [11:8]	0x03
14H			Number of va	lid rows	per frame V	_Valid [7:0]		0x58
15H	0	0	0	0	Number of	f valid rows	s per frame V	_Valid[11:8]	0x02
18H			Number of to	tal rows	per frame V	_Total [7:0]]	******************	0x74
19H	0	0	0	0	Number o	f total rows	per frame V	_Total [11:8]	0x02
91H			Digital adjustn	nent of in	nage brightn	ess BRT[7:	0]		0x80
95H			Digital adjustn	nent of in	nage contras	t CONT[7:	0]		0x00
96H	1	0	0	0	0	0	0	CONT[8]	0x81
9FH	170	2	Internal to	emperatu	re detection	reading	7/2		read only
A8H		A	djust the interna	al VCOM	voltage val	ue of the sc	reen		0x36
ADH			VPG_PWM sca t to 0x30 when t	nning mo	de selection	, default 0x	.00,		0x00
СЗН				PWM	I value				0x70
C5H			Interlac	ed scann	ing control s	signal			0x00
С6Н			HOSPIE E BOLOGO	45 0 A D D D D D D D D D D D D D D D D D D	ltage enable				0x00

4.2 Test Pattern Selection

The microdisplay is equipped with various test patterns, and when used, only a stable clock signal PCLK needs to be provided.

Address	Bit	Description			
01H	bit5 – bit3	000: With registers 02H, 03H, 04H, 0~255 grayscale of R, G, B signals can be set respectively 001: White field 010: Red field 011: Green field 100: Blue field 101: Transition grayscale pattern from left to right 110: Color bar 111: Checkerboard			

4.3 Video Signal Transfer Format

4.3.1 Selection of Video Signal Format

Address	Bit	Description				
01H	bit2 - bit0	000: 8bit - YCbCr, progressive mode, 8bit - BT.656, interlaced mode; 001: 16bit - YCbCr, 4:2:2 mode; 010: 24bit - YCbCr, 4:4:4 mode; 011: 24bit - RGB, 4:4:4 mode; 101: Test pattern;				

When inputting video signals in different formats, the pin correspondence is shown below.

Interfaces	BT.656	YCbCr	YCbCr	YCbCr	RGB	
Interfaces	(Interlaced)	(Progressive)	4:2:2	4:4:4	4:4:4	
DATA23				Y[7]	R[7]	
DATA22				Y[6]	R[6]	
DATA21				Y[5]	R[5]	
DATA20	GND	GND	GND	Y[4]	R[4]	
DATA19	GND		GND	Y[3]	R[3]	
DATA18				Y[2]	R[2]	
DATA17				Y[1]	R[1]	
DATA16				Y[0]	R[0]	
DATA15	Y/Cb/Cr[7]	Y/Cb/Cr[7]	Y[7]	Cb[7]	G[7]	
DATA14	Y/Cb/Cr[6]	Y/Cb/Cr[6]	Y[6]	Cb[6]	G[6]	
DATA13	Y/Cb/Cr[5]	Y/Cb/Cr[5]	Y[5]	Cb[5]	G[5]	
DATA12	Y/Cb/Cr[4]	Y/Cb/Cr[4]	Y[4]	Cb[4]	G[4]	
DATA11	Y/Cb/Cr[3]	Y/Cb/Cr[3]	Y[3]	Cb[3]	G[3]	
DATA10	Y/Cb/Cr[2]	Y/Cb/Cr[2]	Y[2]	Cb[2]	G[2]	
DATA9	Y/Cb/Cr[1]	Y/Cb/Cr[1]	Y[1]	Cb[1]	G[1]	
DATA8	Y/Cb/Cr[0]	Y/Cb/Cr[0]	Y[0]	Cb[0]	G[0]	
DATA7			Cb/Cr[7]	Cr[7]	B[7]	
DATA6		GND	Cb/Cr[6]	Cr[6]	B[6]	
DATA5			Cb/Cr[5]	Cr[5]	B[5]	
DATA4	GND		Cb/Cr[4]	Cr[4]	B[4]	
DATA3	GND		Cb/Cr[3]	Cr[3]	B[3]	
DATA2			Cb/Cr[2]	Cr[2]	B[2]	
DATA1			Cb/Cr[1]	Cr[1]	B[1]	
DATA0			Cb/Cr[0]	Cr[0]	B[0]	

4.3.2 ITU-R BT.656 Format Signal Register Setting

The microdisplay supports ITU-R BT.656 signals in embedded synchronous format. Take standard PAL-D video as an example, the register settings when the image is centered are shown below.

Address	Value	Description				
01H	0x00	BT.656 (interlaced) format: 0x00				
05H	0x24	Embedded synchronization, interlaced scanning				
0EH	0x60	W.T. 10.260				
0FH	0x03	H_Total: 0x360				
10H	0x04	Redundant pixels (left)				
11H	0x20	W W U 1 0 200				
12H	0x03	H_Valid: 0x320				
13H	0x04	Redundant pixels (right)				
14H	0x2C	V/VV 0 120				
15H	0x01	V_Valid: 0x12C				
16H	0x02	Redundant rows (top)				
17H	0x02	Redundant rows (down)				
18H	0x38	V. T 1 0 100				
19H	0x01	V_Total: 0x138				
ADH	0x30	VPG_PWM scanning mode selection, switch to row copy mode				
C5H	0x12	Interlaced scanning control signal				

Note:

When the input video signal is in the ITU-R BT.656 format, it is incompatible with the default 24bit-RGB format from the factory. Its brightness adjustment and other functions are special methods. Please contact Guozhao Optoelectronics Company for technical support.

4.3.3 YCbCr Format Signal Description

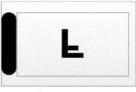
When the input digital video signal is in YCbCr encoding format, the chip needs to perform color space transformation on the YCbCr digital signal, and the transformation relationship is as follows.

$$R = Y + Cr \times 179/128 - 179$$

$$G = Y - Cb \times 44/128 - Cr \times 91/128 + 135$$

$$B = Y + Cb \times 227/128 - 227$$

Note:


The use status of YCbCr encoding format is incompatible with the default factory 24bit-RGB format, so the use scope and method need to be redefined. To use YCbCr format, please contact Guozhao Optoelectronics Company for technical support.

4.4 Up / Down and Left / Right Inverse Display

The microdisplay supports inverse display of video images in both horizontal and vertical directions.

Address	Bit	Description
		Vertical display settings
	bitl	0: Vertical normal display
0511		1: Vertical inverse display
05H	bit0	Horizontal display settings
		0: Horizontal normal display
		1: Horizontal inverse display

(c) Vertical Inverse

(b) Horizontal inverse

(d) Horizontal and vertical inverse

4.5 Image Display Position Setting

The microdisplay supports the display setting of the full-screen image at any position, and the horizontal and vertical offset position values can be set separately, with a maximum value of 0x04.

Address	Bit	Description				
06H	bit5	Enable setting in horizontal position 0: Display start point moves to the right; 1: Display start point moves to the left;				
	bit4-bit0	Number of columns to move, ranging from 0x00 to 0x04				
07Н	bit5	Enable setting in vertical position 0: Display start point moves down; 1: Display start point moves up;				
	bit4-bit0	Number of rows to move, ranging from 0x00 to 0x04				

4.6 Image Timed Movement

The microdisplay supports timed dynamic movement of the entire screen image in the horizontal or vertical direction. When the timed movement function is turned on, the entire screen image will automatically move at the set time interval in the order of down, right, up and left. The number of rows/columns moved up and down and left and right will be the same, and finally return to the initial position before movement.

Address	Bit	Description
		Horizontal timed movement control
	bit6	0: Dynamic movement function is turned off;
		1: Dynamic movement function is turned on;
08H	bit5	Vertically timed movement control
		0: Dynamic movement function is turned off;
		1: Dynamic movement function is turned on;
	bit4-bit0	Number of rows/columns to move, range from 0x00 to 0x04
09H	bit7-bit0	The time interval for movement STICK_TIME, with a unit
0AH	bit7-bit0	time interval of one frame;
07111	OIL7-OILO	Register 09H value is STICK_TIME [7:0];
0BH	bit7-bit0	Register 0AH value is STICK_TIME [15:8];
0CH	bit7-bit0	Register 0BH value is STICK_TIME[23:16];
UCH	DIL/-DILU	Register 0CH value is STICK_TIME[31:24];

Note:

There are 4 redundant pixels on the top, bottom, left and right of the display screen, and when the dynamic movement function is turned on, the range of movement cannot exceed the range of redundant pixels.

4.7 Temperature Detection

The microdisplay has temperature detection function, and the temperature conversion formula is:

$$T = 0.54 \times Reg(9FH) - 52$$

T is the actual temperature value and Reg(9FH) is the reading of the temperature register 9FH.

Note:

- 1. The temperature reading changes greatly during the initialization of the microdisplay, and it is recommended to read the temperature value after a few seconds of stabilization;
- 2. During normal operation, the temperature reading update cycle is four frame image cycles.

4.8 Brightness Adjustment

The factory default brightness of the microdisplay is about 150cd/m², and the recommended brightness range is 50cd/m² ~ 300cd/m². The user can adjust the brightness appropriately according to the needs of the use. The brightness adjustment method is PWM adjustment method, the corresponding configuration register address is C3H, and adjust the brightness by changing the values of register. The factory default value for the C3H register is 0x70. The recommended configuration parameter value range at normal temperature is between 20H to FFH, and the adjustment step is 0x04. The higher the PWM value, the higher the brightness, and the PWM value corresponding to maximum brightness is 0xFF.

4.9 Brightness-Temperature Compensation

Due to the varying full temperature features of silicon-based OLED microdisplay, the brightness increases at high temperature and decreases at low temperature. In order to improve the consistency of brightness at different temperatures, it is recommended to perform brightness compensation. The reference formula is as follows:

$$X = X_0 + \frac{T - T_0}{3}$$

X is the set value of the A8H register at the current temperature, X_0 is the set value of the A8H register at the reference temperature, T is the current temperature, and T_0 is the reference temperature (usually around 25 °C).

Note:

At any temperature, the A8H register configuration value cannot be less than 0x18. If it is less than 0x18, the product will have overcurrent protection and will be damaged or burned for a long time.

4.10 Image Brightness Digital Adjustment

The microdisplay has the image brightness digital adjustment function, and the brightness adjustment formula is as follows:

$$Y = Y_0 + (BRT/2 - 64)$$

Y is the adjusted data value, Y₀ is the input image data value, and BRT is the configuration value of the 91H register. After adjustment, the low gray stage and the high gray stage may produce data overflow, resulting in image distortion, and it is recommended to configure it as appropriate.

4.11 Image Contrast Adjustment

The microdisplay has the image contrast adjustment function, that is, the input image data is processed in the same proportion multiplier mode to achieve the effect of image contrast change. The image contrast adjustment register address is 95H and 96H, and the adjustment range is 0x000 to 0x1FF.

The contrast adjustment formula is as follows.

$$Y = Y_0 \times CONT / 255$$

Y is the adjusted data value, Y0 is the input image data value, and CONT is the 95H and 96H register value.

4.12 I²C Interface

The user can write or read the values of the register inside the screen through the I²C interface. The I²C interface communication mode conforms to the standard communication protocol. The host can realize functions of test pattern selection, brightness adjustment, contrast adjustment, temperature reading and so on by reading and writing internal registers of the microdisplay.

The communication rate supports 10KHz~400KHz.

Note:

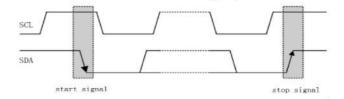
- SDA and SCL signals must be pulled up with resistors to VIH;
- When the transmission distance of I²C communication signal is long, please pay attention to the signal integrity and anti-interference measures of SDA and SCL;
- When the I²C communication signal is seriously disturbed, I²C communication can be carried out during the vertical blanking interval, or the communication frequency can be appropriately reduced.

4.12.1 Slave Address Selection

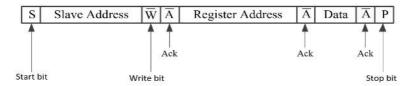
The microdisplay is used as a slave device. Its address can be selected by SERADD pin, which is 0x54 when the SERADD pin is low and 0x55 when the SERADD pin is high. The specific slave address and read/write instructions are as follows.

Slave address	Instructions	Bit7 (MSB)	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1 (SERADD)	Bit0 (R/W)	Valid bytes
Read	1	0	1	0	1	0	0	1	0xA9	
0x55	Write	1	0	1	0	1	0	1	0	0xAA
	Read	1	0	1	0	1	0	1	1	0xAB

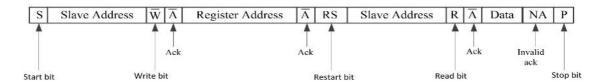
4.12.2 Data Transfer Format


4.12.2.1 Flag Bit Description

Start signal(S): the change of SDA line from high level to low level when the SCL line is high level;


Pause signal (P): the change of SDA line from low level to high level when the SCL line is high level;

Active answer (ACK): SDA at low level indicates active answer;


Negative answer (NAK): SDA at high level indicates negative answer;

4.12.2.2 Write Sequence

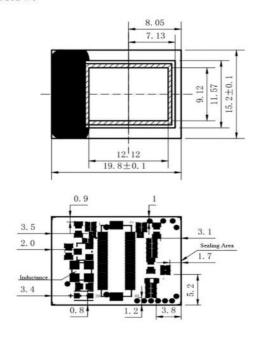
4.12.2.3 Read Sequence

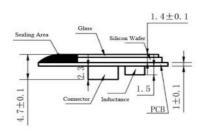
5.2.2 Inspection Standards for Defect Points

Defect points refer to subpixels that cannot display correctly, such as pixels that are always bright or dim. The inspection standards for defect points are carried out in accordance with the requirements as follows.

No.	Item	Request
1	2 consecutive dead pixels	full-screen ≤ 1
2	3 or more consecutive dead pixels	0
3	Bright point	No bright points on the black field
4	Bad line	No

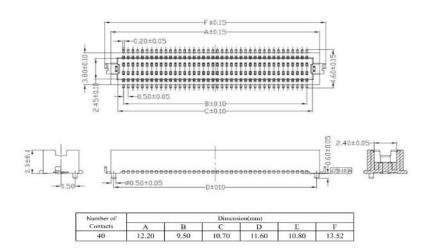
5.2.3 Test Conditions


- 1) Use a dedicated test fixture to light up the microdisplay, and inspect the white field display of the microdisplay under the microscope's bright field at a magnification of $100 \times$ (objective $10 \times$, eyepiece $10 \times$);
- Use a dedicated test fixture to light up the microdisplay, the microdisplay shows the black field, and use the $12\times$ eyepiece to observe the bright points.



6 Structure and Package

6.1 Product Structure


The overall size of the microdisplay is 19.8mm×15.2mm, and other dimensions are shown below.

6.2 Connector Dimension

Unit: mm

